	Roll No												
--	---------	--	--	--	--	--	--	--	--	--	--	--	--

Total No. of Pages : 03

Total No. of Questions : 18

B.Tech.(CSE/IT) (2012 to 2017) (Sem.–3) MATHEMATICS – III Subject Code : BTAM-302 M.Code : 70808

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Answer briefly :

- 1. Write Euler's formula of Fourier series.
- 2. Define Laplace transforms.
- 3. Define the Homogeneous partial differential equations.
- 4. Define analytic functions and write its Cauchy-Riemann equations.
- 5. Define Binomial and Poisson distributors.
- 6. Define Null and Alternative hypothesis.
- 7. What is the difference between Euler's and Runge-Kutta methods for solving the differential equations?
- 8. Write the difference between chi-square and t-distributions.
- 9. Write the Laplace transform of $t^2 \sin 2t$
- 10. Define eigen value.

1 | M-70808

Download all NOTES and PAPERS at StudentSuvidha.com

SECTION-B

- 11. Express f(x) = x as a half-range cosine series in 0 < x < 2.
- 12. Using the Laplace transform, evaluate

$$\int_{0}^{\Box} t e^{\Box^{3t}} \sin t \, dt$$

13. Solve the following equation

$$\frac{\frac{3}{2}}{3} \boxed{4} \frac{\frac{3}{2}}{3} \boxed{4} \frac{\frac{3}{2}}{3} \boxed{4} \frac{\frac{3}{2}}{3} \boxed{2} \boxed{9}$$

- 14. a) Service calls come to a maintenance center, according to a Poisson process and, on the average, 2.7 calls come per minute. Find the probability that (a) no more than 4 calls come in any minute ; (b) fewer than 2 calls came in any minute.
 - b) Find the value of c such that P (|X-25| < c) = 0.9544 where X ~ N (25, 36). Given that P (Z <- 2) = 0.0228 and P (Z <- 1.69) = 0.0456, Z being a standard normal variate.
- 15. A survey of 240 families with 4 children each revealed the following distribution :

No of how	3	2	1	0
	5		1	
No offamilies 10	55	105	58	12

Is the result consistent with the hypothesis that male and female births are equally probable? Use chi-square value for 4 & 5 d.f. at 5% level of significance is 9.49 & 11.07 respectively.

SECTION-C

16. Prove that the function f(z) define $byf(z) \Box \frac{x^3(1 \Box i) \Box y^3(1 \Box i)}{x^2 \Box y^2}$, $z \approx 0$ and f(0) = 0 is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet $f \downarrow (0)$ does not exist.

2 M-70808

(S2)-841

Download all NOTES and PAPERS at StudentSuvidha.com

- 17. Determine the largest eigen value and the corresponding eigen vector of the matrix 2 $\Box 1$ 0 \Box using the power method. Take $[1, 0, 0]^T$ as initial eigen vector. 2 1 0 ∏1 2
- a) Using Euler's method, find an approximate value of y corresponding to x = 0.5 given 18. that $\frac{dy}{dx} []x []y$, and y = 1, where x = 0. Use step size 0.1
 - b) Apply Gauss elimination method to solve the equations

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any

Download all NOTES and PAPERS at StudentSuvidha.com