Roll No.

|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total No. of Pages : 03
Total No. of Questions : 18

# B.Tech.(CSE/IT) (2012 to 2017) <br> (Sem.-3) <br> MATHEMATICS - III <br> Subject Code : BTAM-302 <br> M.Code : 70808 

Time : 3 Hrs.
Max. Marks : 60
INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

## SECTION-A

Answer briefly :

1. Write Euler's formula of Fourier series.
2. Define Laplace tranisisms.
3. Define the Herogeneous partial differential equations.
4. Define ar,uytic functions and write its Cauchy-Riemann equations.
5. Define Binomial and Poisson distributors.
6. Define Null and Alternative hypothesis.
7. What is the difference between Euler's and Runge-Kutta methods for solving the differential equations?
8. Write the difference between chi-square and t-distributions.
9. Write the Laplace transform of $t^{2} \sin 2 t$
10. Define eigen value.

## SECTION-B

11. Express $f(x)=x$ as a half-range cosine series in $0<x<2$.
12. Using the Laplace transform, evaluate

$$
\int_{0}^{\square} t e^{\square 3 t} \sin t d t
$$

13. Solve the following equation

14. a) Service calls come to a maintenance center, according to a Poisson process and, on the average, 2.7 calls come per minute. Find the probability that (a) no more than 4 calls come in any minute; (b) fewer than 2 calls came in any minute.
b) Find the value of c such that $\mathrm{P}(|\mathrm{X}-25|<c)=0.9544$ where $\mathrm{X} \sim \mathrm{N}(25,36)$. Given that $\mathrm{P}(\mathrm{Z}<-2)=0.0228$ and $\mathrm{P}(\mathrm{Z}<-1.69)=0.0456, \mathrm{Z}$ being a standard normal variate.
15. A survey of 240 families yot 4 children each revealed the following distribution :

| No. of bo | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No. families | 10 | 55 | 105 | 58 | 12 |

Is the result consistent with the hypothesis that male and female births are equally probable? Use chi-square value for $4 \& 5$ d.f. at $5 \%$ level of significance is $9.49 \& 11.07$ respectively

## SECTION-C

16. Prove that the function $f(z)$ define $\operatorname{by} f(z) \square \frac{x^{3}(1 \square i) \square y^{3}(1 \square i)}{x^{2} \square y^{2}}, z 80$ and $f(0)=0$ is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet $f \mid$ (0) does not exist.
17. Determine the largest eigen value and the corresponding eigen vector of the matrix $2 \quad \square 1 \quad 0$
$12 \quad \square 1$ using the power method. Take $[1,0,0]^{\mathrm{T}}$ as initial eigen vector.
0 ○1 2
18. a) Using Euler's method, find an approximate value of $y$ corresponding to $x=0.5$ given that $\frac{d y}{d x} \square x \square y$, and $y=1$, where $x=0$. Use step size 0.1
b) Apply Gauss elimination method to solve the equations

$$
\begin{array}{r}
x+4 y-z=-5 \\
x+y-6 z=-12 \\
3 x-y-z=4
\end{array}
$$



NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

